
 

Intro — Why lasers and ultra-low RNA-seq? 

“Genome-wide characterisation of tissue- or cell-specific gene expression is a recurrent 

bottleneck in biology” because small samples are difficult to isolate and RNA yields are often too 

small for RNA-seq analysis.1 Statistical tools and vibrating micro-blades have been used to help 
prevent neighbouring tissues from contaminating datasets, but they’re relatively ineffective.2 

Laser-Assisted Microdissection (LAM) is quite self-explanatory. It involves using a thin laser beam 

to cut out specific cells under a microscope in preparation for RNA-seq. In this study, the 

researchers used plant embryos from Arabidopsis thaliana to test how effective LAM is when 

distinguishing the transcriptomes of epidermal and mesophyll cells within the embryos. My 
review investigates the researcher’s claim that as little as 0.02mm2 of tissue and 0.05ng of RNA 

can be used to effectively analyse differential gene expression. 

Methods 

The researcher’s dataset was analysed for quality using FastQC v0.11.73 as per Babraham 

Bioinformatics’ methodology.4 3 out of the 16 available fastq files5 were randomly selected for 

quality analysis (‘Epidermal 1 Forward’, ‘Epidermal 3 Forward’ and ‘Mesophyll 1 Reverse’). 

Although all 16 fastq files should be checked for quality, the consistent quality across our 3 
random analyses warranted further investigation of differential gene expression using RStudio 

Desktop (open source licence AGPL v3).6 The packages limma, edgeR, gplots, RColorBrewer and 

Glimma were used to filter out lowly expressed genes, check the data for quality, normalise the 
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data based on size differences between the libraries, and finally test for genes that were 

differentially expressed between the epidermal and mesophyll cells. Like the researchers, a p-

value of <0.05 was used as the threshold after adjusting for the false discovery rate. 

Results 

To investigate how much RNA was needed for RNA-seq, the researchers used 5ng, 0.100ng, 

0.075ng, 0.050ng, 0.025ng, and 0.010ng (all from the same biological sample).  I started by 
investigating the researchers’ claims that only 0.050ng of RNA “can be used without compromising 

the number of genes detected”. This wasn’t straight forward because the number of genes 

detected in the 5ng sample was up to 33% lower than the trend line calculated from the other 5 

samples (Figure 1). I respectfully disagreed with the researchers, opting to use the 0.100ng 

sample as the reference instead of the anomalous 5ng sample. However, relative to the 0.100ng 
sample, the number of genes detected in the 0.050ng sample still only dropped by 4%, keeping 

the researcher’s claim valid. 

I found that a low CPM threshold of >0.3 corresponds to counts of 10-15 for the library sizes 

(Figure 2A). I had initially opted to use a CPM threshold of >0.5 but the researchers used >1.0, so 

I investigated all three thresholds. The CPM threshold of 1.0 corresponds to counts of 35-40, but 
this makes very little difference to the differential gene expression analysis (Figure 2B, 5). For 

each gene, I had initially required all 4 biological replicates to meet the CPM threshold in order 

for it to be considered as differentially expressed. However, the researchers allowed a gene to be 

considered as differentially expressed even if only half of the biological replicates met the CPM 

threshold, so I tested for both. The researchers found a total of 870 DEGs whereas I found a 
maximum of 312 (Figure 2B). 

The AtML1 and AtPDF2 genes were chosen by the researchers to validate their DGE analysis. I 

have compiled their data in Figure 3 which indeed verifies their expression levels in epidermal 

and mesophyll cells. I also used limma::topTable in R to curate a list of genes that are most likely 

to be significantly differentially expressed. I researched a selection of these genes and found that 
most of their functions are indeed relevant to epidermal cells in Arabidopsis embryos (Figure 4). 

Discussion 

The researchers took some merit away from their claim when they opted to collect 0.100ng 

samples for their DGE analysis. Why spend twice as long collecting 0.100ng of RNA while claiming 

that 0.050ng is enough “to perform a comprehensive analysis of the expressed genome”? The 

researchers also claim that their results support using LAM for DGE analysis of other plant 

tissues, but they did not address how total RNA yield varies between cells of different types and 
sizes.7 



Because using LAM for ultra-low RNA-seq is a relatively new method, there is not much relevant 

data in the literature, however, Illumina’s user guide suggests RNA samples as low as 0.010ng 

can be used if the RNA quality is high enough.8 The Arabidopsis eFP Browser  has data for 
expression in the cotyledons of torpedo-stage embryos, but it is not yet specific enough to 

distinguish expression in the epidermal cells from the mesophyll cells. Not only is LAM being 

used more for cell-specific RNA-seq, it is also being used to isolate samples from plants that are 

hard to transform,15 and to accurately automate tumour sampling for personalised medicine.16 

For the differential expression analysis, I used a bayesian approach to adjust p-values to control 
the false discovery rate, whereas the researchers used a Benjamini–Hochberg approach. “In 

typical QTL or microarray experiments, where m is large and some rejections typically occur, the 

difference between [Bayesian] FDR and [Benjamini–Hochberg] FDR is usually very small”17 so this can 

not explain the large difference between the researcher’s 870 DEGs and my 312 DEGs. By 

applying a logFC > 1 threshold, the researchers’ number of DEGs is limited to 571. However, I 
have not yet found a reason that explains this near 2-fold difference, and I welcome feedback. 

As referenced before, Figure 4 shows that most of the DEGs I researched encode proteins whose 

functions are relevant to epidermal differentiation, germination, seed dormancy, cuticle wax 

biosynthesis, anthocyanin biosynthesis, trichome formation and more. As such, this paper has 

shown that sequencing just 0.100ng of RNA from laser-dissected samples is an effective method 
for exploring differential expression at a microscopic level. The researchers spent a lot of effort 

exploring the cutin and anthocyanin biosynthesis pathways. However, given climate change’s 

increasing threat on agricultural industries,18 it is a shame that the researchers did not 

investigate the seed dormancy and trehalose genes which have shown potential to increase crop 

yields during drought.19  

Finally, an obvious limitation to this study, like most RNA-seq studies, are the small number of 

replicates used. Having only 4 replicates limits the number of significant DEGs that can be found. 

However, 2 comparisons with 4 biological replicates each is relatively generous given the current 

costs of Next Generation Sequencing (NGS). As the cost per nucleotide sequenced continues to 

decrease,20 it will be interesting to see how physical limits affect server storage growth and 
encourage data compression in coming years.21 



Figures 

Figure 1 — The relationships between RNA sample size, library size and genes detected 
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Figure 2A — Plot of CPM thresholds and corresponding read counts 

Figure 2B — Differentially expressed genes found at varying CPM thresholds across all 4 
biological replicates, versus in at least 2 out of 4 biological replicates 
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Figure 3 — Expression levels of validation genes from study vs from Arabidopsis eFP 
Browser* 

Figure 4 — Selection of differentially expressed genes for functional analysis 

Gene logFC Adjusted p-
value

Mean CPM 
Epidermal

Mean CPM 
Mesophyll

CPM 
Range*

AtML1 3.132 0.015 132 25 17–27

AtPDF2 3.142 0.003 231 31 29–31

Gene logFC Adjusted p-
value

Function Relevance

TPS2 10.52 0.0433
Dehydration 

tolerance, Prevent 
ice formation

Needed for seed 
dormancy11

MFH8.2 10.13 0.0433
Oxidoreductase 

for ROS reduction

Removes ROS 
from germination, 

Dormancy 
signalling12

SVB 3.03 0.0003
Controls length 
and number of 

trichomes

Controls 
epidermal cell 
differentiation 

into trichomes13

SBT 2.97 0.0003
Serine protease 
for proteolysis

Mobilising 
precursor proteins 

for seed 
maturation14



Figure 5 — R Script for DGE analysis 

library(edgeR) 
library(limma) 
library(Glimma) 
library(gplots) 
library(RColorBrewer) 
seqdata <- read.csv("GSM2588913_counts.csv", stringsAsFactors = FALSE) 
sampleinfo <- read.delim("SampleInfo.txt") 
countdata <- seqdata[,-(1:1)] 
rownames(countdata) <- seqdata[,1] 
myCPM <- cpm(countdata) 
thresh3 <- myCPM > 1 
keep3 <- rowSums(thresh3) >= 2 # I initially used >=4 
counts.keep3 <- countdata[keep3,] 
y3 <- DGEList(counts.keep3) 
logcounts3 <- cpm(y3,log=TRUE) 
group <- paste(sampleinfo$CellType) 
group <- factor(group) 
y3 <- calcNormFactors(y3) 
design <- model.matrix(~ 0 + group) 
colnames(design) <- levels(group) 
v3 <- voom(y3,design) 
fit3 <- lmFit(v3) 
cont.matrix <- makeContrasts(EpidermalVsMesophyll=epiderm - 
mesophyll,levels=design) 
fit3.cont <- contrasts.fit(fit3, cont.matrix) 
fit3.cont <- eBayes(fit3.cont) 
limma.res3 <- 
topTable(fit3.cont,coef="EpidermalVsMesophyll",sort.by="p",n="Inf") 
write.csv(limma.res3,file=“EpidermalVsMesophyll-3.csv",row.names=TRUE) 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